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ABSTRACT In this paper, for the first time, the performance analysis of short channel In0.53Ga0.47As
quantum well (QW) 3-D tri-gate technology with advanced high-κ gate dielectric, TaSiOx is presented. We
benchmark the projected performance of sub-10 nm In0.53Ga0.47As transistor technology as a function of
fin width, fin aspect ratio, and gate length scaling based on present-day lithographic advancement aiding
InGaAs QW tri-gate technology as a replacement to Si for sub-10 nm transistor technology. The highly
scaled oxide (EOT ∼ 12Å) while retaining superior interfacial properties (Dit ∼ 4 × 1011 cm−2eV−1)
provides higher ON current for given idle performance. Furthermore, the simulated In0.53Ga0.47As tri-gate
transistor exhibits superior gate electrostatic control with low OFF-state current (IOFF) ∼ 24.5 nA/μm,
peak transconductance (gm) ∼ 2 mS/ μm and high ION/IOFF ratio ∼ 2.3 × 103, aiding the case of alternate
channel transistors for high-speed and low-power CMOS logic.

INDEX TERMS InGaAs, InGaAs/InAlAs heterojunctions, Fin field-effect transistors, tri-gate, simulation.

I. INTRODUCTION
The aggressive scaling of silicon (Si)-based CMOS logic
has led to an unprecedented performance enhancement, while
facing several technical challenges to work around the sever-
ity of an increased power density and idle leakage. A key
solution utilized so far involved carrier mobility enhance-
ment through the application of strain to the Si channel [1].
However, mobility enhancement through strained Si is bound
to hit its limit due to strain relaxation once it reaches
its critical layer thickness and hence, an alternate chan-
nel with higher carrier mobility will play a crucial role
in effectively reducing the power density. III-V compound
semiconductors have been the frontrunner to replace Si based
n-channel metal-oxide-semiconductor field effect transistors
(n-MOSFETs) due to its extremely high electron mobil-
ity compared to that of strained Si [2]. Furthermore, with
scaling of transistor nodes, the semiconductor industry was
pushed to employ Si based 3-D architecture at the 22 nm
node to improve gate electrostatics [3]. In retrospect to this,
III-V quantum well (QW) tri-gate device architecture has

been investigated extensively as a replacement to current
Si technology [2], [4]. As the aggressive scaling of device
dimensions makes current transistor technology more suscep-
tible to short channel effects such as, drain induced barrier
lowering (DIBL) and subthreshold slope (SS) degradation,
novel solutions need to be employed to mitigate such tech-
nological hindrances. Improvement in gate electrostatics is
an effective way to reduce short channel induced perfor-
mance degradation. TaSiOx as a gate dielectric on alternate
channel InGaAs material can exhibit superior interfacial
quality with lower interface induced defects (Dit) ∼ 4x1011

cm−2eV−1 [4], which is on par with Al2O3 [2]. Furthermore,
TaSiOx is highly scalable demonstrating low gate leakage
with an equivalent oxide thickness (EOT) ∼ 12 Å [5].
In addition, the 3-D tri-gate architecture can induce high

gate leakage due to the clustering of electric field lines at
the corners of the fin [6]. In this paper, the tri-gate device
with TaSiOx as gate dielectric employing lattice matched
In0.53Ga0.47As/In0.52Al0.48As system has been calibrated to
be further scaled down and hence predict short channel
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device performance using TCAD’s self-consistent solver cou-
pled with the modified local density approximation (MLDA)
quantization model [7], [8]. The model is calibrated with
reported TaSiOx/InGaAs results [2], [4], [5] to further con-
duct a performance benchmarking analysis of sub-10 nm
In0.53Ga0.47As QW 3-D tri-gate technology based on current
day lithographic limitations.

II. DEVICE STRUCTURES AND PHYSICAL MODELS
A. In0.53Ga0.47As FIN STRUCTURE AND BAND
ALIGNMENT
An ultra-scaled gate-drain and gate-source separation
(LSIDE = 5 nm) InGaAs QW transistor was demonstrated,
increasing effective gate area over the channel [4] and hence
improving electrostatic control. Subsequently, a simplified
source/drain (S/D) scheme was employed with an epitaxially
grown un-doped In0.7Ga0.3As QW fin on an In0.52Al0.48As
bottom barrier (lattice mismatched system). However, this
limited the critical thickness of the active layer due to
strain induced dislocations due to film relaxation resulting
in a shorter fin height.
To overcome this and optimize quantum con-

finement within the fin, the lattice-matched
In0.53Ga0.47As/In0.52Al0.48As system was employed to
demonstrate taller fin height HFIN = 50 nm and width
WFIN = 30 nm using inductively coupled plasma (ICP)
dry etch [4], [5]. Following this, device quality ultra-high
fin aspect ratio (HFIN/WFIN) long channel devices were
demonstrated using a novel ICP etch process followed by
a digital etch which avoided dry etch damage improving
device performance [9], [10]. Fin dimensionality plays
a very influential role in improving device performance
against short channel effects as will be discussed later in
this paper. Fig. 1 (a) and (b) shows the InGaAs QW fin
structure with simplified S/D scheme [3]. Fig. 2 shows
the band alignment of the lattice matched undoped
In0.53Ga0.47As/In0.52Al0.48As QW system along with InP
substrate and TaSiOx as gate dielectric.

FIGURE 1. (a) Tri-gate InGaAs QW FinFET structure with simplified raised
S/D scheme with scaled LSIDE = 5nm [4], [5]. (b) Channel cross section
with TaSiOx as gate dielectric on lattice matched (InGaAs/InAlAs) quantum
well system.

FIGURE 2. Band alignment of the epitaxially grown lattice matched
Quantum well system. The lattice-matched QW system enables taller fins
due to privation of critical thickness as in the case of In0.7Ga0.3As,
however at the cost of mobility.

B. QUANTUM MECHANICAL MODEL
The MLDA model [7], [8] describes a multiple-electron sys-
tem in a constant potential as a function of a spatially
varying perturbation while accounting for quantum mechan-
ical reflection (of the wave function) from an attractive
potential, a phenomenon due to which the local density of
states at the insulator/semiconductor interface shows oscilla-
tions and reduces to a null value [8]. This holds significant
importance for the modelling of tri-gate transistors, given
the narrow fin structure, in order to accurately describe the
superior gate electrostatic control observed in tri-gate field
effect transistors.
Therefore, we employ the MLDA model to all simulations

in this work [8]. Furthermore, the quantum correction for
carrier confinement in a QW shifts the carrier density cen-
troid away from the interface by an additional spacing (tcen)
owing to the lack of carrier states. This can be observed in
Fig. 3 resulting in the capacitance model shown in the inset
of the figure. Consequently, the effective gate coupling will
reduce in the form while accounting for spacing [11], [12]:

1

Cox′
= 1

Cox
+ 1

Ccent
= tox

εoεox
+ tcen

εoεch

where, εch is the dielectric constant of the alternate channel
and Ccent is the centroid capacitance and is a function of the
potential of the QW (�S,QW). The reduced oxide capacitance
will hence affect device DIBL and SS characteristics:

SS = kBT

q

(
1 + CD

Cox′

)
.

A degraded SS is evident in the quantum mechanical
model affecting the threshold voltage (VT) roll-off hence
worsening DIBL.

C. BENCHMARKING METHODOLOGY
The voltage of operation (VCC) for the device is equal to the
drain-to-source bias (VDS) = 0.5V [13]. The threshold volt-
age (VT) is selected at specified current IDS = 1µA/µm [14].
Approximately 1/3 of the gate voltage swing (VGS = VCC)
below VT is used to obtain the OFF-state current, IOFF and
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FIGURE 3. Schematic showing the shift of the normalized carrier density
centroid away from the oxide/semiconductor interface. The carrier density
for both models are normalized to the maximum carrier density of the
classical model.

TABLE 1. Model parameters.

2/3 gate voltage (VGS) swing over VT provides the ON-state
current, ION [13]. Short channel effects such as DIBL was
evaluated as the shift in VT at 1µA/µm with change in VDS
bias between 0.05V and 0.5V. Sub-threshold slope (SS) is
calculated over the region of operation (VCC). The calibra-
tion of the simulation model accounts for quantization effects
which makes short channel effects more sensitive to device
scaling. Furthermore, it has been shown that the sensitiv-
ity of �VT increases below 15nm due to the amplification
of quantization effects with deviation from the classical
model [10].

D. DEVICE CALIBRATION
Fig. 4 shows the simulated capacitance-voltage (C-V) char-
acteristics of an InGaAs QW tri-gate structure with highly
scaled TaSiOx (EOT = 12 Å) as gate dielectric showing
improved electrostatics over Al2O3 as gate oxide with same
oxide thickness. The simulated results are in good agreement
with the expected behavior presented for a planar device [2].
The response of the tri-gate FET at low fin aspect ratio is

FIGURE 4. Simulated comparison showing improved electrostatics with
TaSiOx (EOT = 12Å) over Al2O3 as gate dielectric. Both models have the
same oxide thickness. The nature of the simulation agrees with
data presented for the planar structure comparing Al2O3 and TaSiOx as
gate dielectrics [2].

crucial to precisely determine the model’s ability to estimate
short channel effects and hence for LG =60 nm, we base our
model around HFIN = WFIN = 40 nm [5] employing the sim-
ulation parameters tabulated in Table 1. The influence of the
interfacial properties on device characteristics is crucial to
calibrate the device response. Depending on the magnitude,
nature and position of traps, the C-V response of a device can
be modelled [15]. Since we are modelling the device to fol-
low the variation of DIBL and SS with LG and WFIN scaling
based on previously presented data [5], the Dit distribution
was developed which could agree with all variable parame-
ters to calibrate the model to both DIBL and SS. Fig. 5 is
the developed Dit distribution used to calibrate the model to
C-V characteristics, transfer characteristics and short channel
effects reported in [5]. The accuracy of the variation of short
channel effects with the gate length and fin width variation
aids to the validity of the developed distribution as depicted
in Fig. 8 and 10. The Dit distribution implemented con-
sisted of 3 Gaussian curves to fit the C-V and short channel
effects. However, in the case of fitting DIBL, SS and C-V
with a uniform distribution for several devices (i.e., multiple
WFIN), a small error towards the depletion region of the C-V
response with doping ND = 5x1017cm−3. This is also due to
the fact that the reported C-V characteristics in [5] is for an
n-doped MOSCAP, while an n-MOSFET requires a p-type
channel doping indicating two samples of different dopant
types and levels. However, to calibrate DIBL response, chan-
nel doping of NA = 5x1017cm−3 provided accurate results
while a doping of ND = 1x1017cm−3 provided a matched
C-V response as depicted in Fig. 6. Fig. 6 shows the cal-
ibrated C-V response of the InGaAs QW tri-gate structure
with WFIN= 45 nm and highly scaled TaSiOx gate oxide
with EOT = 12Å ensuring favorable carrier response to
gate bias [5].
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FIGURE 5. Developed Dit distribution for TaSiOx/In0.53Ga0.47As interface
implemented to calibrate model to C-V characteristics, transfer
characteristics and short channel effects presented in [5].

FIGURE 6. Simulated C-V characteristics using TCAD simulation fitted to
presented experimental data [5]. The tri-gate QW fin width WFIN = 45 nm
and highly scaled (EOT = 12Å) TaSiOx as gate dielectric is in good
agreement with presented experimental data [5].

Fig. 7 shows the simulated transfer characteristics fitted
to the experimental InGaAs QW tri-gate FET with LG =
60nm and WFIN = HFIN = 40nm (low fin aspect ratio).
The effective channel width of the fin structure is given
by Z = 2*HFIN + WFIN = 120nm [5]. The simulation
yields favorable results in good agreement with experimental
data [5].
Fig. 8 and Fig. 9 show the calibrated DIBL and SS

response as a function of gate length (LG) scaling for WFIN
= 45nm and 30nm [5]. The figures depict the exponen-
tial increase in DIBL and SS with LG being scaled below
150nm. This due to the amplification of short channel effects.
Adding to this, we observe that 30nm devices show consider-
able improvement of both DIBL and SS over 45nm devices.
This is a result of the deeper penetration of electric field
into the channel through the side walls providing improved

FIGURE 7. Transfer characteristics using TCAD simulation fitted to match
reported experimental data [5]. Device operation range shows a high
ION/IOFF ratio∼104. For performance analysis, ID at VT was selected as
1µA/µm as described InGaAs surface channel FET [14].

FIGURE 8. Simulated DIBL response with LG scaling of the tri-gate QW fin
has scaled to EOT = 12 Å using TCAD simulation along with best-fit curves
fitted to simulation data points. Obtained data is in good agreement with
the presented experimental data [5].

gate coupling over the channel from fin width reduction.
The calibrated response of short channel effects with scal-
ing of fin width are also in good agreement with reported
data depicting the models accuracy. We continue to investi-
gate the effect of fin dimension scaling on the short channel
effects of the InGaAs QW tri-gate device with TaSiOx as
gate dielectric to further understand the design criteria of
sub-10nm post Si transistor technology.

III. RESULTS AND DISCUSSION
A. FIN SCALING INFLUENCE ON DEVICE PERFORMANCE
Fig. 10 shows the simulated DIBL response as a function
of LG/WFIN with LG = 60nm yielding favorable results
with reported data [5]. Fin width (LG/WFIN) scaling is the
primary factor that can be optimized to improve device per-
formance against short channel effects. Beyond this, higher
fin aspect ratios (HFIN/WFIN) can improve the performance

VOLUME 5, NO. 6, NOVEMBER 2017 499



SALURU et al.: PERFORMANCE ANALYSIS

FIGURE 9. Simulated SS response with LG scaling of the tri-gate QW fin
has scaled EOT = 12 Å using TCAD simulation along with best-fit curves
fitted to simulation data points. Obtained data is in good agreement with
presented experimental data [5].

FIGURE 10. Simulated DIBL response as a function of LG/WFIN with LG =
60nm along with best-fit curves fitted to simulation data points. Obtained
data is in good agreement with presented experimental data [5].

against DIBL though its influence is lower compared to WFIN
scaling. The DIBL values decrease with increasing LG/WFIN
(which means a smaller WFIN is inevitable). This is attributed
to the stronger electrostatic couple from a smaller WFIN.

We observe ∼ 52% drop in DIBL while scaling LG/WFIN
between 1 and 3 as compared to Si fins which show a ∼ 65%
drop in DIBL with scaling of LG/WFIN from 1 to 1.5 [16].
Fig. 11 shows modeled SS response as a function of

LG/WFIN. Once again, the primary factor of SS improve-
ment followed by optimization using fin aspect ratio. The
influence of LG/WFIN on SS is as expected in favor of DIBL
improvement in gate coupling with fin width reduction.
Fig. 12 and Fig. 13 show DIBL and SS improvement with

fin aspect ratio. The reduction in both DIBL and SS satu-
rates with doubling of the fin aspect ratio. This is due to
the fact that the electric field created at the two side walls
dominate the channel compared to influence from the top
side. On the other hand, both DIBL and SS are improved

FIGURE 11. Simulated SS response as a function of LG/WFIN with LG =
60nm along with best-fit curves fitted to simulation data points. Obtained
data is in good agreement with presented experimental data [5].

FIGURE 12. Simulated short channel (LG = 10nm) DIBL response as
a function of HFIN/WFIN with 10nm and 7nm WFIN along with best-fit
curves fitted to simulation data points. A 32% reduction in DIBL can be
obtained by scaling fin width down to 7 nm.

with smaller WFIN resulting in stronger electrostatic coupling
from the two side walls which is regarded as the primary
factor to improve gate electrostatics. Furthermore, HFIN can
be increased for improved carrier confinement taking into
account the maximum fin height given a specific fin width
to avoid yield issues. Ultra-high fin aspect ratios have been
demonstrated on long channels as a promising step for the
development of III-V QW tri-gate technology [9]. With con-
tinued scaling of LG, the improvement in lithography and
etch technology will play a crucial role in improving the per-
formance of tri-gate QWFETs against short channel effects
like SS and DIBL.

B. SHORT CHANNEL PERFORMANCE AND
BENCHMARKING
Assuming transferable interfacial quality, the active layer is
scaled to LG = 10nm. Fig. 12 shows DIBL vs. fin aspect ratio
for the scaled active layer. A 32% reduction in DIBL can be
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achieved by scaling WFIN from 10 nm to 7nm. The reduced
improvement in performance against DIBL with variation
against LG/WFIN is noticeable between LG = 60nm and
10 nm. Fig. 13 shows reduction in SS for the short chan-
nel model with LG = 10nm. The improvement with WFIN
reduction to 7nm along with SS saturation with high fin
aspect ratios yields an SS ∼ 120 mV/decade. High fin aspect
ratio short channel devices for sub-10nm WFIN are yet to be
demonstrated for rectangular fins due to yield issues which
can be improved using trapezoidal fins. However, rectangu-
lar fins exhibit superior electrostatics over their trapezoidal
counterparts [17] while the latter can improve yield at the
cost of device performance.

FIGURE 13. Simulated short channel (LG = 10nm) SS response as
a function of HFIN/WFIN with 10nm and 7nm WFIN along with best-fit
curves fitted to simulation data points. A 6% reduction in SS can be
obtained by scaling fin width down to 7nm. However, this reduction has
a drastic effect on the reduction of DIBL as can be seen in Fig. 12.

FIGURE 14. Simulated transconductance (gm) response with WFIN scaling
with HFIN = 50nm for LG = 10 nm along with best-fit curves fitted to
simulation data points.

Fig. 14 show the variation of transconductance (gm)
with WFIN scaling for LG = 10nm. The scaling of WFIN
which reduces ON current ION [10] negatively impacts the

FIGURE 15. Observed short channel (LG = 10nm) ION/IOFF ratio along
with best-fit curves fitted to simulation data points shows increase with
WFIN scaling for given ION with simultaneous reduction in IOFF shows
improved gate control.

FIGURE 16. Performance benchmarking short channel (LG = 10nm)
InGaAs QW tri-gate structure with highly scaled TaSiOx (EOT = 12Å) as gate
dielectric.

transconductance (gm) as shown in Fig. 14. However, the
severity of transconductance degradation reduces with scal-
ing of the channel length which boosts ON current (ION) and
hence improves the transconductance for given WFIN [18].
The superior electrostatic properties of tri-gate architecture
are enhanced with WFIN reduction showing an improvement
of the saturated peak gm (from gate length scaling) [18].
Fig. 15 shows the variation of ION/IOFF and IOFF ratio with
WFIN depicting the tri-gate architectures superior electro-
static properties. We observe a near 45 nA/µm drop in
OFF-state current along with a near 3-fold increase ION/IOFF
ratio showing improved gate control with WFIN reduction.
Fig. 16 is a benchmarking of transconductance (gm) vs sub-
threshold slope (SS) aiding the case of TaSiOx as a gate
dielectric with other relevant data having the same Indium
composition in the channel aiding the case of tri-gate archi-
tecture. Table 2 shows the performance benchmarking of the
short channel effects and device charactersitcs of simulated
device structure with TaSiOx as gate dielectric.
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TABLE 2. Performance benchmarking.

FIGURE 17. Normalized carrier density profile for WFIN = 30nm, 15nm and
7nm. The fin structure exhibiting carrier volume inversion due to the
amplification of quantization effects observes an apparent ‘spread’ in the
charge centroid, i.e., a larger volume of the fin is completely inverted
thereby reducing tcen and hence EOT.

C. QUANTIZATION EFFECTS AND EOT SCALING
The sensitivity of �VT increases below 15nm due to ampli-
fication of quantization effects with deviation from the
classical model starting at WFIN = 15nm [10]. Fin scaling
leads to larger lateral electric field across its cross-section
causing the carrier centroid to shift towards the interface
thereby reducing the actual EOT with the reduction of Tcen.
Adding to this, the amplification of quantization effects
causes carrier volume inversion [28], thereby enhancing the
gates inverting ability of the channel with a larger volume
of the channel contributing to conduction leading to the
enhancement of device performance.
Fig. 17 shows a comparison of the normalized electron

density profile for WFIN = 30nm, 15nm and 7nm. The
fin structure exhibiting carrier volume inversion due to the
amplification of quantization effects observes an apparent
‘spread’ in the charge centroid, i.e., a larger volume of the
fin is completely inverted thereby reducing tcen and hence
the EOT as EOT = εSiO2*(tox/εox+tcen/εch).

IV. CONCLUSION
In summary, we have successfully modeled and conducted
a performance benchmarking analysis of the 3-D III-V
InGaAs QW tri-gate transistor architecture with high-κ
TaSiOx gate dielectric and scaled down to analyze the perfor-
mance at a sub-10nm scale. The simulated In0.53Ga0.47As
tri-gate transistor exhibits superior gate electrostatic con-
trol with low OFF-state current (IOFF) ∼ 24.5 nA/µm, peak
transconductance (gm) ∼ 2mS/ µm and high ION/IOFF ratio
∼ 2.3x103. The novel oxide TaSiOx coupled with tri-gate
architecture has the potential to exhibit superior electrostat-
ics and is a potentially feasible option for future sub-10 nm
alternate channel transistor technology.
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